TY - JOUR
T1 - Backbone and side-chain 1H, 13C and 15N assignments of the PPIase domain of macrophage infectivity potentiator (Mip) protein from Coxiella burnetii
AU - Tse, Man Kit
AU - Cheung, Stanley K.K.
AU - Ke, Yi Hong
AU - Lau, Candy C.Y.
AU - Sze, Kong Hung
AU - Yuen, Kwok Yung
PY - 2014/4
Y1 - 2014/4
N2 - Coxiella burnetii is an obligate intracellular gram-negative bacterium uniquely evolved to thrive in the inhospitable phagolysosome of macrophage. C. burnetii causes Q fever in humans and animals, which is emerging as a global public health concern. It is highly infectious and designated as a category B biowarfare agent because of its ubiquitous nature, abundant natural reservoirs, high resistance to environmental conditions, ease of transmission and low infectious dose. The lack of knowledge and awareness of C. burnetii leads to under-reporting and under-diagnosing of Q fever cases. Therefore, further understanding of the interactions between the infected host and the bacteria is necessary. C. burnetii macrophage infectivity potentiator (cb-Mip) is a secreted protein of 230 amino acids involving in intracellular survival of the pathogen. cb-Mip belongs to the family of FK506 binding protein, which possesses peptidyl-prolyl cis/trans isomerase (PPIase) activity. Besides acting as a PPIase, Mip protein homolog has been identified as virulence factor of many intracellular pathogenic microorganisms. In the present study, we report the near complete resonance assignments of the PPIase domain-containing region of Mip protein of C. burnetii. Secondary structure prediction based on chemical shift index analysis indicates that the protein adopts a predominately beta-strand structure, which is consistent with the crystal structure of homologous Mip protein in Legionella pneumophila.
AB - Coxiella burnetii is an obligate intracellular gram-negative bacterium uniquely evolved to thrive in the inhospitable phagolysosome of macrophage. C. burnetii causes Q fever in humans and animals, which is emerging as a global public health concern. It is highly infectious and designated as a category B biowarfare agent because of its ubiquitous nature, abundant natural reservoirs, high resistance to environmental conditions, ease of transmission and low infectious dose. The lack of knowledge and awareness of C. burnetii leads to under-reporting and under-diagnosing of Q fever cases. Therefore, further understanding of the interactions between the infected host and the bacteria is necessary. C. burnetii macrophage infectivity potentiator (cb-Mip) is a secreted protein of 230 amino acids involving in intracellular survival of the pathogen. cb-Mip belongs to the family of FK506 binding protein, which possesses peptidyl-prolyl cis/trans isomerase (PPIase) activity. Besides acting as a PPIase, Mip protein homolog has been identified as virulence factor of many intracellular pathogenic microorganisms. In the present study, we report the near complete resonance assignments of the PPIase domain-containing region of Mip protein of C. burnetii. Secondary structure prediction based on chemical shift index analysis indicates that the protein adopts a predominately beta-strand structure, which is consistent with the crystal structure of homologous Mip protein in Legionella pneumophila.
KW - Coxiella burnetii
KW - Macrophage infectivity potentiator
KW - NMR resonance assignment
KW - PPIase domain
KW - Virulence factor
UR - http://www.scopus.com/inward/record.url?scp=84897109098&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84897109098&partnerID=8YFLogxK
U2 - 10.1007/s12104-013-9477-3
DO - 10.1007/s12104-013-9477-3
M3 - Article
C2 - 23616102
AN - SCOPUS:84897109098
SN - 1874-2718
VL - 8
SP - 173
EP - 176
JO - Biomolecular NMR Assignments
JF - Biomolecular NMR Assignments
IS - 1
ER -